Efficient optical extraction of hot-carrier energy
نویسندگان
چکیده
منابع مشابه
Efficient optical extraction of hot-carrier energy.
Light-induced generation of free charge carriers in semiconductors constitutes the physical basis of photodetection and photovoltaics. To maximize its efficiency, the energy of the photons must be entirely used for this purpose. This is highly challenging owing to the ultrafast thermalization of 'hot' carriers, which are created by absorption of high-energy photons. Thermalization leads to heat...
متن کاملHot Carrier Extraction with Plasmonic Broadband Absorbers.
Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assemb...
متن کاملHot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles
The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of ...
متن کاملHot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative he...
متن کاملEnergy flows in graphene: hot carrier dynamics and cooling.
Long lifetimes of hot carriers can lead to qualitatively new types of responses in materials. The magnitude and time scales for these responses reflect the mechanisms governing energy flows. We examine the microscopics of two processes which are key for energy transport, focusing on the unusual behavior arising due to graphene's unique combination of material properties. One is hot carrier gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2014
ISSN: 2041-1723
DOI: 10.1038/ncomms5665